Федеральное государственное автономное образовательное учреждение высшего образования

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ ФАКУЛЬТЕТ ФИЗИКО-МАТЕМАТИЧЕСКИХ И ЕСТЕСТВЕННЫХ НАУК

УТВЕРЖДЕНА

Ученым Советом факультета физико-математических и естественных наук Протокол № 0201-08/08 от 15 марта 2022 г.

ПРОГРАММА

Междисциплинарного вступительного испытания в магистратуру по направлению подготовки 09.04.03 «ПРИКЛАДНАЯ ИНФОРМАТИКА» на образовательную программу «Искусственный интеллект и анализ данных»

Программа составлена на основе Образовательного стандарта высшего образования Российского университета дружбы народов по направлению 09.04.03 «Прикладная информатика»

ОБЩИЕ ТРЕБОВАНИЯ

При поступлении на магистерские программы направления «Прикладная информатика» проверяется владение следующими компетенциями:

- способность использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной информатикой и информационными технологиями;
- способность понимать и применять современный математический аппарат, концепции и системные методологии, международные и профессиональные стандарты в области информационных технологий;
- способность эффективно применять базовые математические знания и информационные технологии при решении проектно-технических и прикладных задач, связанных с использованием информационных технологий.

На экзамене необходимо продемонстрировать:

- знание основных понятий, определений, утверждений и теорем предметных областей, входящих в программу экзамена;
- владение математическим аппаратом и умение использовать на практике основные теоретические положения и методы дискретной математики, математической логики, математического анализа, алгебры и аналитической геометрии, дифференциальных уравнений, теории вероятностей и математической статистики в объеме, предусмотренном требованиями к уровню подготовки бакалавра по направлению «Прикладная информатика»;
- способность применять в профессиональной деятельности современные языки программирования и языки баз данных, операционные системы и сетевые технологии, электронные библиотеки и пакеты программ, методы моделирования сложных систем и технологии анализа данных;
- умение в понятной форме, логически последовательно и непротиворечиво обосновать и изложить письменно ход своих рассуждений при решении задач.

ОСНОВНЫЕ РАЗДЕЛЫ ПРОГРАММЫ

- 1. Непрерывность функции одной переменной, свойства непрерывных функций.
- 2. Функции нескольких переменных. Полный дифференциал и его геометрический смысл. Достаточные условия дифференцируемости. Частные производные, градиент.
- 3. Экстремум функций нескольких переменных; необходимые условия, достаточные условия.
- 4. Числовые ряды, виды сходимости. Достаточные признаки сходимости.

Свойства абсолютно сходящихся рядов.

- 5. Ряды функций. Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов.
- 6. Степенные ряды. Свойства степенных рядов. Разложение элементарных функций.
- 7. Определенный интеграл, интегрируемость непрерывной функции. Определение кратного интеграла.
- 8. Интеграл Коши. Ряды Тейлора и Лорана.
- 9. Линейные непрерывные функционалы. Линейные операторы.
- 10. Линейные пространства, их подпространства. Базис, размерность. Теорема о ранге матрицы, ее приложение к теории систем линейных уравнений.
- 11. Билинейные и квадратичные функции и формы в линейных пространствах, их матрица. Приведение к нормальному виду.
- 12. Собственные значения и собственные векторы линейного оператора. Условие приводимости матрицы к диагональному виду. Жорданова нормальная форма матрицы.
- 13. Евклидово пространство. Ортогональные матрицы. Симметричные преобразования.
- 14. Дифференциальные уравнения 1-го порядка. Теорема о существовании и единственности решения.
- 15. Линейные однородные и неоднородные дифференциальные уравнения с постоянными коэффициентами.
- 16. Линейные разностные уравнения. Общий вид решения однородного уравнения.
- 17. Треугольное разложение матриц. Метод Гаусса решения систем линейных алгебраических уравнений.
- 18. Свойства норм векторов и матриц.
- 19. Итерационные методы решения линейных алгебраических уравнений.
- 20. Методы решения нелинейных алгебраических уравнений: одномерные и многомерные; нулевого, первого и второго порядка.
- 21. Принцип сжимающего отображения. Метод Ньютона.
- 22. Интерполяционные формулы Ньютона и Лагранжа. Многочлены Чебышева, их свойства.
- 23. Численное решение задача Коши для ОДУ: метод Эйлера; методы второго порядка; метод Рунге-Кутта.
- 24. Случайный эксперимент и случайные события. σ- алгебра событий. Аксиоматическое определение вероятности и ее свойства. Классическая и

геометрическая вероятности.

- 25. Условная вероятность и независимость событий. Формулы сложения, полной вероятности и Байеса.
- 26. Схема Бернулли. Локальная и интегральная предельные теоремы Муавра-Лапласа. Предельная теорема Пуассона.
- 27. Случайные величины (CB). Свойства функции распределения (ФР). Дискретные и непрерывные CB. Примеры.
- 28. Определение и свойства математического ожидания и дисперсии. Моменты. Моменты нормального распределения.
- 29. Многомерные CB и их ФР. Дискретные и непрерывные многомерные CB. Независимые CB.
- 30. Моменты многомерных СВ. Ковариация и коэффициент корреляции. Многомерное нормальное распределение.
- 31. Определение и основные свойства характеристических функций ($X\Phi$). $X\Phi$ основных распределений.
- 32. Неравенство Чебышева и закон больших чисел. Центральная предельная теорема.
- 33. Основные понятия математической статистики: выборка, вариационный ряд, эмпирическая ФР, гистограмма и полигон частот. Выборочные моменты.
- 34. Классификация оценок. Эффективность оценок. Функция правдоподобия и оценки максимального правдоподобия.
- 35. Проверка статистических гипотез. Уровень значимости и мощность критерия. Ошибки 1-го и 2-го рода. Критерий согласия Пирсона.
- 36. Элементы комбинаторики (сочетания, размещения (с повторениями и без повторений), перестановки). Формула включений и исключений. Бином Ньютона. Свойства биноминальных коэффициенты.
- 37. Функции алгебры логики. Принцип двойственности. СДНФ, СКНФ. Эквивалентные преобразования. Минимизация булевых функций. Таблица простых импликантов, алгоритм Куайна-Макклосски.
- 38. Исчисление высказываний. Метод резолюций. Исчисление предикатов. Предваренная нормальная форма, скулемовская стандартная форма.
- 39. Неориентированные графы. Матрица смежности для неориентированных графов. Алгоритм Краскала (построение минимального покрывающего дерева).
- 40. Ориентированные графы. Матрица инцидентности для ориентированных графов. Алгоритм почтальона.
- 41. Реляционная модель. Понятие ключа. Целостность базы данных.
- 42. Реляционная алгебра. Основные операции реляционной алгебры.

- 43. Функциональные зависимости. Каноническая форма.
- 44. Нормальные формы. Преобразование к нормальным формам.
- 45. Основные команды SQL. Соотношение их с реляционной алгеброй.
- 46. Принципы построения операционных систем: ОС реального времени и разделения времени; архитектура монолитной и микроядерной ОС
- 47. Основные понятия операционных систем: процесс, примитив, среда выполнения. Уровень выполнения ядра и уровень выполнения задачи.
- 48. Понятие о файловой системе. Функции, архитектура. Логическая и физическая организация файловой системы. Распределённые файловые системы.
- 49. Подсистема межпроцессного взаимодействия. Понятие сигналов, именованных и неименованных каналов. Механизмы разделения памяти и механизм семафоров
- 50. Принципы построения открытых систем. Иерархия функций взаимодействия открытых систем. Понятие о протоколе и межуровневом интерфейсе.
- 51. Модель взаимодействия открытых систем. Характеристики протоколов семиуровневой модели. Сравнение семиуровневой модели с моделью стека протоколов TCP/IP.
- 52. Цветовые системы RGB и CMYK.
- 53. Гистограммы тоновых изображений. Выравнивание гистограммы. Матрицы совместной встречаемости уровней серого тона.
- 54. Использование видового и перспективного преобразований при построении изображений трехмерных объектов.
- 55. Алфавиты, слова, языки. Операции над словами и языками. Детерминированные конечные автоматы. Диаграммы переходов. Регулярные языки. Недетерминированные конечные автоматы. Теорема о детерминизации.
- 56. Операции над конечными автоматами. Замкнутость класса регулярных языков относительно операций объединения, пересечения, дополнения, конкатенации, возведения в степень и итерации.
- 57. Абстрактный автомат. Классификация абстрактных автоматов. Автоматы Мили и Мура.
- 58. Машина Тьюринга. Операции над машинами Тьюринга. Машина Тьюринга с полулентой и её связь с обычной машиной Тьюринга.
- 59. Основные понятия формальных грамматик. Терминальные и нетерминальные символы. Правила вывода. Грамматический вывод.
- 60. Классификация формальных грамматик. Иерархия Чомского формальных

грамматик. Автоматные грамматики. Контекстно-свободные грамматики. Автоматы с магазинной памятью.

- 61. Принципы моделирования. Основные понятия UML: диаграммы, отношения и сущности. Виды сущностей, диаграмм, отношений.
- 62. Матрица данных. Числовые и категориальные признаки. Подготовка и обработка данных. Снижение размерности. Поиск ассоциативных правил. Классификация данных. Кластеризация данных.

ПОРЯДОК ПРОВЕДЕНИЯ И ОЦЕНИВАНИЯ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

Междисциплинарные испытания при приеме на обучение по программам магистратуры на направление 09.04.03 «Прикладная информатика» проводятся в форме теста, формируемого электронной системой сопровождения экзаменов (ЭССЭ) с автоматической проверкой ЭССЭ правильности выполненных заданий (компьютерный тест).

Компьютерный тест состоит из 20 вопросов с множественным выбором ответа: с выбором одного правильного ответа из множества, с выбором нескольких правильных ответов из множества, с вычисляемым ответом. Тест включает по 2 вопроса из следующих разделов математики: решение систем линейных уравнений, операции над матрицами, вычисление пределов, ОДУ высших степеней (задача Коши), вычисление дисперсии непрерывной случайной величины и свойства вероятности и моментов, свойства математического ковариации свойства ожидания дисперсии, математическая логика, реляционные базы данных, методы моделирования сложных систем, методы анализа данных.

На выполнение всего теста отводится 120 минут.

Для вопросов с выбором одного правильного ответа: за правильный ответ начисляется 5 баллов, за неправильный - ноль. Для вопросов с выбором нескольких правильных ответов: за полный правильный ответ начисляется 5 баллов, за частичный правильный ответ - учитывается каждая правильная часть ответа в процентном отношении. Весь тест оценивается из 100 баллов.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3х т. М.: ФИЗМАТЛИТ, 2003.
- 2. Задачи и упражнения по математическому анализу для втузов [Текст] : Учебное пособие для втузов / Под ред. Б.П.Демидовича. М. : Астрель, 2010. 495 с. : ил. ISBN 978-5-271-01118-4.
- 3. Бочаров П.П., Печинкин А.В. Теория вероятностей и математическая статистика. М.: ФИЗМАТЛИТ. 2005

- 4. Зарядов И.С., Милованова Т.А. Решение задач по теории вероятностей [Текст/электронный ресурс]: Учебно-методическое пособие. Электронные текстовые данные. М.: Изд-во РУДН, 2012. 50 с.: ил. ISBN 978-5-209-04553-3.
- 5. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А Математический анализ в вопросах и задачах. Изд. 3-е. М.: Наука, 2000.
- 6. В. А. Ильин, Э. Г. Позняк Линейная алгебра, М.: Наука Физматлит, 1999.
- 7. Бутузов В.Ф., Крутицкая Н.Ч., Шишкин А.А. Линейная алгебра в вопросах и задачах. М.: ФИЗМАТЛИТ, 2002. 248 с.
- 8. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. Москва. Физматлит. 2002.
- 9. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. Москва.
- 10. Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Полный курс [Текст] : Учебное пособие. М. : Физматлит, 2007. 408 с. : ил.
- 11. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике: Учеб. пособие. 3-е изд., перераб. М.: ФИЗМАТЛИТ, 2009. 416 с.
- 12. Харари Ф. Теория графов / Пер. с англ. В.П.Козырева; Под ред. Г.П.Гаврилова. 4-е изд.. М.: URSS: Либроком, 2009. 296 с.: ил
- 13. Дейт Крис Дж. Введение в системы баз данных / Пер. с англ. и ред. К.А.Птицына. 8-е изд.. М.: Вильямс, 2008. 1328 с.: ил.
- 14. Таненбаум Э.. Компьютерные сети [Текст] . 4-е изд.. СПб. : Питер, 2003, 2006. 992 с.. (Классика Computer science).